

FERTILIZER & CHEMICAL INPUTS FOR HEALTHY TURF

JAMES GRAHAM PRUSA

DIRECTOR, GOLF COURSES AND LAB SKY72 Golf Resorts - Korea

WEB SITE: WWW.PRUSAASSOCIATES.COM EMAIL: jgp@alumni-GSB.Stanford.edu

You may download this PPT at this link:

<u>www.PrusaAssociates.com/PowerPoint Presentations/2017PGCMC Prusa.pptx</u>

WE HAVE A SERIOUS "COST" PROBLEM IN GOLF !!!

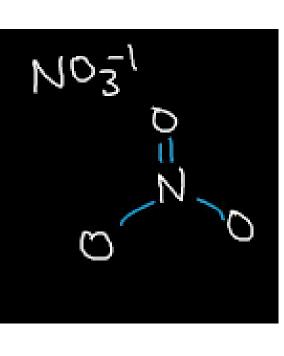
- 1. Golf is too expensive and superintendents are much to blame! WHY?
- 2. From my experience and observations I have found that 75 80% of Golf Course Superintendents <u>world-wide</u> are weak to extremely weak in skill levels to calculate their comparative fertilizer / chemical use accurately.

WE HAVE A SERIOUS "COST" PROBLEM IN GOLF !!!

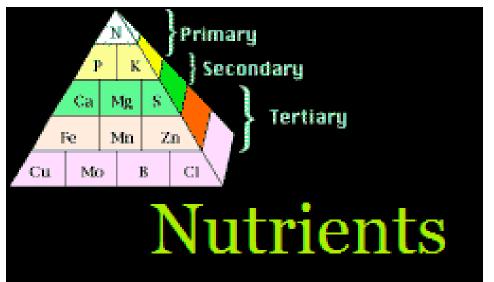
- 1. Golf is too expensive and superintendents are much to blame! WHY?
- 2. From my experience and observations I have found that 75 80% of Golf Course Superintendents <u>world-wide</u> are weak to extremely weak in skill levels to calculate their comparative fertilizer / chemical use accurately.
- 3. LET's GET <u>REAL</u>! If you can't calculate your actual use accurately in a standard format, you will be completely lost when it comes to:

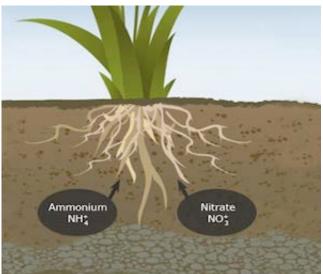
A. COMPARATIVE <u>Cost Use Analysis</u>B. COMPARATIVE <u>Material Effi</u>cacy

4. What skills do YOU need to have or to gain *intelligent competence*?


1. You must be able to do elementary mathematic calculations with understanding of some simple Algebra / Geometry.

 You must be able to do elementary mathematic calculations with understanding of some simple Algebra / Geometry.
 You need at least a high school level understanding of simple


Chemistry.


1 1A 1 1 3991						Perio	odic T	able	of the	e Elem	nents						18 VIIIA 8A 2 OSMA He
Hydrogen 2008 3 1853 Lithurn 5342	2 IIA 2A 4 IDET Berydium 5022	TP = Triple Pressure is	elting points are i e Point s listed if not 1 atr is listed if more th					Atomic Number Sym Nar Atomic	me			13 IIIA 3A 5 2075 B Boron 10811	14 IVA 4A 6 minute Carbon 12001	N Nitrogen 14007	Oxygen 15999	F Fluorine	Heisum 4201 10 States for minute Neoni 20150
11 074 Na Sodum 21300	12 eso Magnesium 24.05 20 M2	3 IIIB 38	4 IVB 4B 22 1668	5 VB 58	6 VIB 6B	7 VIIB 7B 25	8	vm	10	11 IB 1B 29 228442	12 IIB 2B	13 660.12 Aluminum 20362 31 2076.75	14 1414 Si Silicon 70.066	Phosphorus 30374 33 ELT IV	16 10.20 Sulfur 32.006 34 ee 2208	17 -1013 Cl Chiorine 35453 35 -72	Argon 36 dat Mate
Potessium wood	Ca Catolum Acote	Sc Scandium 44.955 39 1522	Ti Titanium 47.85	23 Vanadium 50.942 41 2477	Cr Chromium 51.995 42 2423	Manganese 54938 43 2157	Fe Jon 55 933 44 204	Co Cobalt 58353 45 194	26 Nickel 56693 46 15549	Cu Copper 63.546 47 H6L78	20 Znc 6539 48 N107	Gallum 64732 49 3348	Germanium 72.61 50 213.99	Arsenic 74322 51 6000	Selenium 78.972 52 40.51	53 Eromine 53 1117	S4 CHILDREN
Rb Autoritium se aus 55 26.44	Sr Strontium 8762 56 721	Yttrium 88.905 57-71	Zr Zirconium 91,224 72 2299	Niobium 97,906 73 3057	Molybdenum 95.95 74 Mazz	Tc Technetium 38,907 75 3185	Ru Ruthenium JOLO7 76 IO31	Rhodium 102,906 77 3446	Palladium 106.42 78 1768.2	Ag Silver 107.848 79 1994.18	Cd Cadmium 312,411 80 -34.83	In Indum Integra	Sn Tin 11871 82 1974	Sb Antimony 121,760 83 277,4	Te Tellurium 127.6 84 ²¹⁴	I 100ine 125 904 85 903	Xe Xerron TEL25
Cesium 112.555 87 27		89-103	Hafnium 17849	Tantalum 180.948	Ungsten 183.85	Rhenium 186 207	Osmium 19023	lidium 192.22 109 orknown	Platinum 195.08	Au Gold 196567	Hg Mercury 200.59 112 unknown	Tl Thailium 204383 113 uninour	Pb Lead 2072	Bismuth Sole Mac	Polonium polonium polonium polonium polonium	At Astatine 205.067 117 vrineer	Rn Audon 3222010
Francium 273.020	Radium 226.025	57	Rutherfordium	Db Dubsium (262) 7W 59	Seaborgium IN41 60	Bohrium Deal	Hassium Ditrij 104 62	Meitnerium (268)	Darmstadtium Darmstadtium	Roentgenium 1272)	Copernicium (277)	Ununtrium unknown	FI Fierovium DRB	Ununpentium unknown	LV Uvermorium 1345 70	Ununseptium unknown	Uuo Ununoctium anknown
	Lantha Seri	es Lantt 138 89	tanum Cer	ium Praseo 1125 91	dymium Neod	ymium Prome	ethium Sam	m E Euro 236 95	plum Gado	linium Terl	bium 1923 0xe 98	osium Hot	mium Er	bium Thu	lium Ytte 914 17	rbium Lute 71.04 17	tium 1967 unkinsen
	Actin Seri	es Acti	nium Tho 7029 233	rium Protak 2016 231	tinium Ura 076 230	nium Nept. 8029 217	unium Plub 248 24	Pu A onium Amer voti 243	ioum Cu	rium Berk	sk Califo	mium Einst	einium Fer	mium 7.095 Mende 25	levium Not		ncium eat
			Alkali Metal	Alkalin Eerth	e Tran		Basic Metal	Semimetal	Nonmetal	Halog		ble as	anthanide	Actinide		6 X	4 Todd Helmenstine sciencenates.org

- 1. You must be able to do elementary mathematic calculations with understanding of some simple Algebra / Geometry.
- 2. You need at least a high school level understanding of simple Chemistry.
- 3. You need a must have, basic understanding of <u>plant</u> nutrient requirements MORE THAN 'SIMPLISTIC.'

- 1. You must be able to do elementary mathematic calculations with understanding of some simple Algebra / Geometry.
- 2. You need at least a high school level understanding of simple Chemistry.
- 3. You need a must have, basic understanding of <u>plant</u> nutrient requirements MORE THAN 'SIMPLISTIC.'
- 4. You need some basic Accounting and record keeping / clerical skills and be subject to auditing.
- 5. You need to be able to layout 'must do' test / demonstration plots on your golf course to show <u>golfers</u>, <u>boss</u>, <u>staff & YOURSELF</u>!
- 6. You need to know as much or more than <u>sales people</u>!
- 7. You need to be able to explain and PROVE your use.

STANDARDS & FUNDAMENTALS

- 1. To do meaningful cost comparisons as in Agriculture we use *TURFGRASS INDUSTRY STANDARDS* for measuring.
- Throughout Asia our standard measurement of fertilizer and chemical applications are recorded as: <u>grams (or milliliters)</u> <u>per square meter</u> (*i.e.* 1.0g / m²)
- 3. In North America the standard measurement is recorded as: <u>pounds per 1,000 square feet</u> (i.e. 0.25 lbs. / 1000 ft²)

In Asia you must know how to CONVERT back and forth to compare PESTICIDE LABELS and FERTILIZER APPLICATION RATES:

STANDARDS & FUNDAMENTALS

Make a simple conversion calculator in an Excel spreadsheet:

Pounds per Kft	² to Metric	
:		
0.25		
Metric to Pour	ds per Kft ²	
1.00		

Excel FILE LINK

STANDARDS & FUNDAMENTALS

K+

CL-

Turf

Fertilizer

Mn2+

 $C_{U^{2+}}$

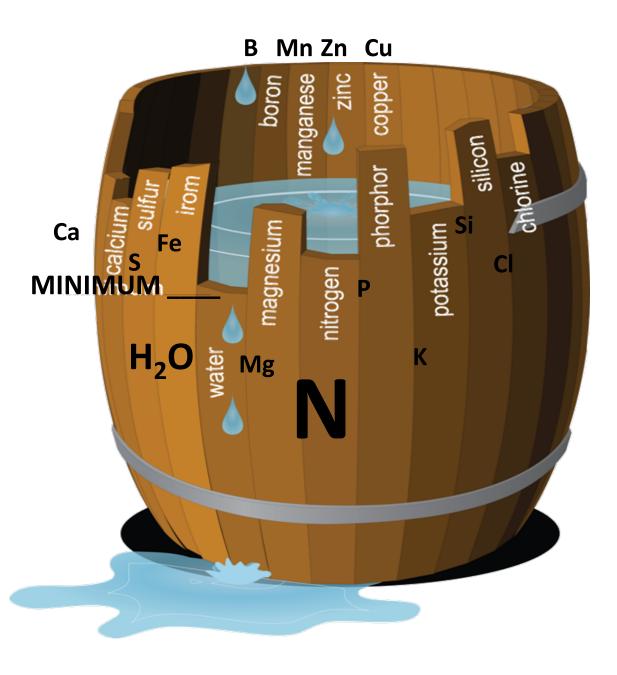
CU

H₂BO₂

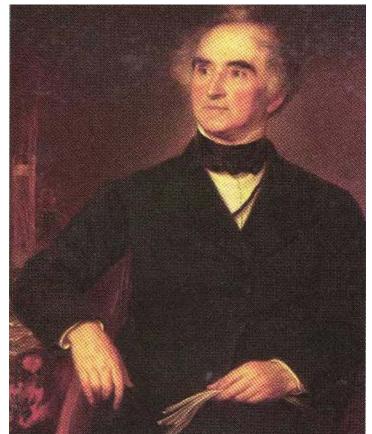
Oh, that Basic Chemistry!!

- You must know FERTILIZER FUNDAMENTALS and the chemical structure of the 'ACTUAL' NUTRIENT MOLECULE that the turfgrass PLANT uptakes each AVAILABLE nutrient <u>cation</u> of <u>anion</u>.
- 2. These are defined <u>LEGALLY</u> in FERTILIZER STANDARDS CODES to determine both our application rates and financial calculations.

% by Weight



KNOWING "ACTIVE INGREDIENTS"


₩ 10,000

₩ 15,000

Law of Minimum

Justus von Liebig 1803 -1873

KNOWING "POUR COST" and "APPLICATION COST" – SIMILAR

SKY72 - Zoysia Material Evaluation Plot Plan

1.01.1 Varieties

1.01.1.1		Zeon" need 20 sq feet using 12" x12" format
1.01.1.2		L1F
1.01.1.3	-	M-66
1.01.1.4	-	M-24
1.01.1.5		29-2-B7
1.01.1.6		662
1.01.1.7	-	M-45
1.01.1.8	-	DR-39
1.01.1.9	-	29-2-B23
1.01.1.10		29-2-89
1.01.1.11	-	M-85
1.01.1.12	-	Y-2
1.01.1.13		TDI2013 (this will ship from Oregon)
1.01.1.14		M-60

18 individual material plots replicated X 3 = 54 total study plots

Each plot shall be 1 meter by 1 meter (square). All plots will be separated by 30 cm of bare ground areas on all sides.
 This plot plan will be installed in three Ocean Course locations: (1) OC Greenhouse; (2) OC #1 PG – south face; (3) OC LPGA Range – north face.

We have added Myers as an index due to its known cold tolerance trait. Bent grass and Kentucky Bluegrass (K.B.) are added for exacting green-up comparison and evaluation of any encroachments. Plots are all to be well maintained at all times. After spring green-up in 2015 all plots will be moved with two (2) heights of cut (HOC).

• FIRST Step in costing things is to know what you really need:

T-E-S-T

- EVERY Greenkeeper should establish TRIAL TEST EVALUATION plots for fertilizer and grasses.
- When developing a golf course first plant grass test plots for grasses you are considering. Test varieties perpetually!

Do you really need what is in all those bags? *Likely not*!

- EVALUATE fertilizer perpetually!
- In conjunction with laboratory soil and water testing, confirms best fertilizers for your specific site!

REQUIRED NUTRIENT ELEMENT	PERCENTAGE BY DRY WEIGHT
Carbon (C)	44%
Oxygen (0,)	44%
Hydrogen (H)	5.5%
Nitrogen (N)	3 - 6.5%
Potassium (K)	2 - 4%
Phosphorus (K)	0.4 - 0.8%
Sulfur (S)	0.3 - 0.7%
Calcium (Ca)	0.3 - 0.6%
Iron (Fe)	0.1 - 0.3%
Magnesium (Mg)	0.1 - 0.2%
Manganese (Mn); Zinc (Zn) Copper (Cu); Molybdenum (Mo) Boron (B); Chlorine (Cl)	TRACE AMOUNTS FOUND

Fig. 2: Nutrient Composition of Turfgrass by Elemental Dry Weight Percentage

SETTING UP YOUR TEST PLOTS

TREATMENT:	Fertilizer 1	No Treatment - Check	Fertilizer 2	No Treatment - Check	Fertlizer3
No treatment - Check					
Fertilizer 2					
No treatment - Check					
Fertilizer 3					
Fertilizer 1					

Doing your own quick application test plots is also a good, oldfashioned soil test. It also cuts to the quick on how any particular fertilizer formulation will work in the complexity of your own golf course location! (I.E. Harding Park GC)

					-	-	-	-	-12					
			30	1.00	A strager b	Contro Partition	Mart at 11.75.		0	-				
	-	-	-	-		ti pini an i n E ogaraity ph	naci ka Creanar Kanangka pilan		1			*	-	
-	1	11.	-		-	-	1123-	-				-124	-10	
7	1	2	3	4	5	6	7	8	9	10	11	12	13	14
tan and tank	15	16	17	18	19	20	21	22	23	24	25	26	27	28
	29	30	31	32	33	34	35	36	37	38	39	40	41	42
-	43	44	45	46	47	48	49	50	51	52	53	54	55	56
-	57	58	59	60	61	62	63	64	65	66	67	68	69	70
-	71	72	73	74	75	76	77	78	79	80	81	82	83	84
And the second	85	86	87	88	89	90	91	92	93	94	95	96	97	98
*	99	100	101	102	103	104	105	106	107	108	109	110	111	112
-	113	114	115	116	117	118	119	120	121	122	123	124	125	126
- marine	127	128	129	130	131	132	133	134	135	136	137	138	139	140
	141	142	143	144	145	146	147	148	149	150	151	152	153	154
interesting .	155	156	157	158	159	160	161	162	163	164	165	166	167	168
-	169	170	171	172	173	174	175	176	177	178	179	180	181	182
	183	184	185	186	187	188	189	190	191	192	193	194	195	196
		-	Patan	22 m² Contro Arctin Contro Arctin Contro Arctin Contro Arctin Contro Arctin Contro Arctin Contro Arctin Contro Con	ALS grasse 181 grasse 181 grasse 181 grasse	teni per ini	Adapter of	FLEgrams file: active ant Soldare New Soldare New Active New Active Marketseler	28 grams 28 grams 28 grams	14 grants				

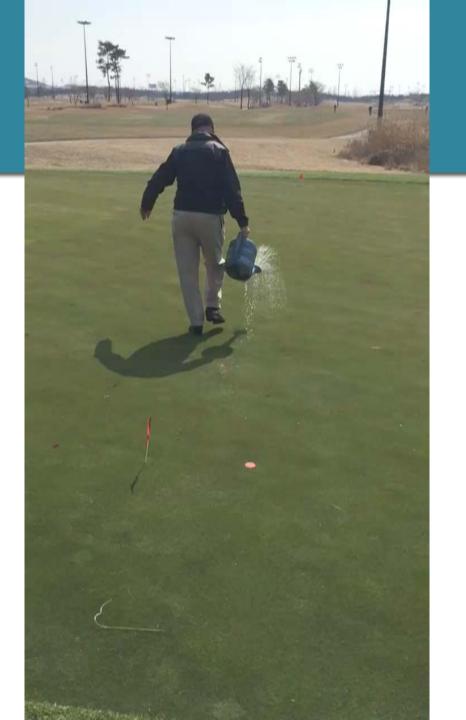
Plot	Application	Notes									
-											
_											
_											
_											
-											
			L								
_											
_											
			-								
_											
			1								

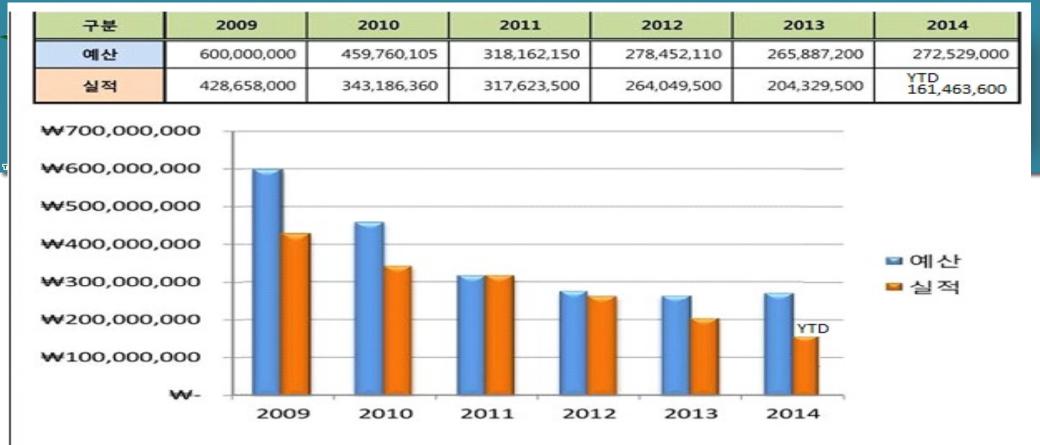
ation crossover application.)

Classic Course #1 Practice Green Fertilizer Trial Plots 10 KOTH IS: Cast No. (All nitrogen fertilizers applied at 0.75 grams N / M²)

All plats are 1 meter by 1 meter square source with the Cause 41 terms and separate plot combinations

		NOU separate plot combinetions																			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	APPLICATIONS	Ammonium Sulfate	Ammonium Molybdate (Mo) 0.25g / M2 ∳	Potassium Nitrata	Calcium Nitrate ¥	CLASSIC COURSE Nutri-Tech 11-10-30+2 MgCSO4	снеск	Boric Add 0.57g / M2	Ures plus Fe Sulfate 1g Mg Sulfate 1g I	Une +	Ammonium Suffate Fe Suffate 1 g Mg Suffate 1 g	iron Sulfate 1 gram 4	Iron Sulfate 2 grams 4	Mono Ammunium Phasphate (MAP) (P)	Magnesium Sulfate 2 grams 4	Magnesium Sultate 1 grams \$	PROSTIM (Ocean Course)	OCEAN COURSE Nutri-Amino ¥	Balance (Ocean Course)	NO TREATMENT ASSIGNED ¥	NO TREATMENT ASSIGNED
1	Urea 🕈	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	Urea + Fe Sulfate 1 grams Mg Sulfate 1	21	22	23	24	25	16	27	28	29	30	31	32	33	34	35	36	37	38	39	40
3	iron Sulfate 1 gram	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
4	iron Sulfate 2 grams 👻	<mark>61</mark>	62	<mark>63</mark>	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
5	Magneslum Sulfete 2 grams	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
6	Magneslum Sulfate 1 gram	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
7	Sulfate Fe Sulfate Sg Mg Sulfate Sg	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
8	CLASSIC COURSE Nutri-Tech 13-10-10-13 MyCROX	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
9	Bork: Add 0.57g/M*	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
10	Calclum Nitrate	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
11	Mono Ammonium Phosphate (MAP) (P)	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
12	Ammonium Molybdata (Mo) 0.25g / M2	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
13	Ammonium Sulfate	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
14	OCEAN COURSE Natri-Andres 19-3-9	261	<mark>262</mark>	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
15	Potsaslum Nitrate	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
	<u> </u>																				





I've learned and taught that the secret of exceptional golf courses is BELOW the surface.

첨부파일

- 2014 년 비료 입찰 결과 자료
- 2014 년 납품 계약서 8부(업체별)
- 기타 참고 자료(업체별 입찰 취합본)

Knowing Your True Cost Efficacy in Chemical, Fertilizer and Fertigation Use

James Graham Prusa

ROYAL GEMS GOLF RESORT Nakhon Pathom, THAILAND ASIAN GOLF COURSE SUPERINTENDENTS SUMMIT

www.PrusaAssociates.com/ArticlesJGP.htm

http://prusaassociates.com/prusa_presentations.htm

HOW TO CALCULATE YOUR FERTILIZER COSTS

Pricing Strategies: Travel Weddings **Fertilizers!**

Single Element Fertilizer Cost Comparison

- Doing single element product comparisons for an element such as Nitrogen (N) is simple.
- An example:

UREA 46-0-0 (20KG bag = ₩ 16,000) 1000 kilograms or 1 metric ton (mt) costs ₩ 800,000 1000 X 0.460 = 460 kg of N costs ₩ <u>800,000</u>

TRUE COST = ₩ <u>800,000</u> / 460 = ₩ 1740 / 1 kg of actual N

GOLDEN

AMMONIUM SULFATE 21.5-0-0 (20KG bag = ₩ 12,000) 1000 kilograms OR 1 metric ton (mt) costs ₩ 600,000 1000 X 0.215 kg of N costs ₩ <u>600,000</u> TRUE COST = ₩ <u>600,000</u> / 215 = ₩ 2790 / 1 kg of actual N

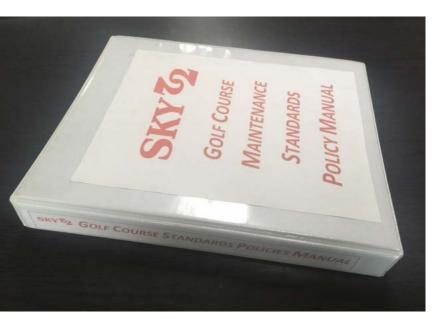
Complete or Complex Fertilizer Cost Comparison

Requires Very Simple Algebra

A + B + C = X

X is the total cost of the fertilizer per a given amount of weight such as a metric ton.

A, B and C represent the different essential plant nutrients **by weight** in the fertilizer and there could be more than only three nutrients (variables).


Since we know the total cost that X represents, we can simply assign a known or defined cost for B and for C variables in order to derive the cost of A.

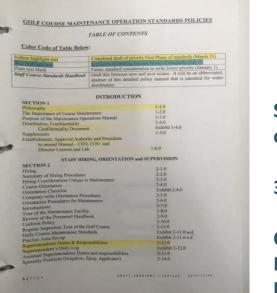

X - B - C = A

CHART OF COSTS FOR ESSEN	TIAL SINGLE	ELEMEN	ITS COMM	on in t	URFGF	rass f	ERTILIZERS
 FIXED PRICES FOR USE IN WORKSHEET, MULTIPLE VARIABLE FORMULAS. Current Korean market price for commercial fertilizer grade: 	price per metric tonne (mt) in Won of this	Calculated Cost of single essential element:	Plant Uptake Molecule	Estmated percentage of this element (can vary):		of single essential	★ In order to establish known values for the three N-P-K cost values, it is necessary to firmly estimate two of three variables (example, P ₂ O ₅ and K ₂ O) for an algebraic calculation of the price of the predominant element such
Urea 45-0-0 CO(NH ₂) ₂	525,000	N	NO3 ⁻ ; NH4 ⁺	46.0%	1.141	1,141	as the nitrogen (N) variable. The same can be done for non-NPK fertilizers.
Monammonium Phosphate (MAP) 11-61-0 (NH ₄)H ₂ PO ₄ [99% pure N=11.8%; P ₂ O ₅ = 61%]	215 000	P ₂ O ₅	H ₂ PO ₄ ⁻⁷ ; HPO ₄ ⁻⁷² ; PO ₄ ⁻³	61.0%	0.315	315	Thus, objective cost analysis and comparison can be done for complete fertilizers. Absolute cost accuracy of P
Potassium Chloride 0-0-61 (KCI) [K = 61%, CI = 46.5%]	150,000	K₂O	K⁺	61.0%	0.246	246	and K is not necessary for N cost comparison as long as consistant
Soil Sulfur (Brimstone) S	925,000	S	SO4 ⁻²	99.0%	0.934	934	values are used for P and K. Periodically update the price of these
Sulfuric Acid H_2SO_4 [98% purity; Solution Density = 1.55; 31% Sulfur]	230.000	S	SO₄ ^{−2}	31.0%	0.078	78	two products.
Gypsum (CaSO₄◆2H₂O) [Pure: Ca = 23.2%, S = 18.6%]	100,000	Ca	Ca ⁺²	23.2%	0.023	23	
Ferrous Sulfate FeSO₄◆7H₂O [98% purity: Fe = 19%, S = 10%]	300,000	Fe	Fe ⁻² [ferric ion Fe ^{-3]}	19.0%	1.403	1,403	
Magnesium Sulfate (Epsom Salt) MgSO ₄ [Mg = 10%, S =	5751000	Mg	Mg ⁺²	10.0%	2.535	2,535	
19%] Manganese Sulfate (Manganous) MnSO₄♦H₂O [Mn = 32.3%, S = 17%]	925,000	Mn	Mn ⁺²	32.3%	2.372	2,372	
Copper Sulfate CuSO ₄ \oplus 5H ₂ O [Cu = 25.4%, S = 12.9%]	2,200,000	Cu	Cu ⁺ ; Cu ⁺²	25.4%	8.187	8,187	
Zinc Sulfate CuSO ₄ \blacklozenge 7H ₂ O [Zn = 21%, S = 10%]	3,000,000	Zn	Zn ⁻²	21.0%	13.841	13,841	
Sodium Molybate Na_2MoO_4 $4P_2O$ [Mo = 39.3%]	2,000,000	Mo	Mo ₄ ⁻²	39.3%	5.089	5,089	
Sodium Borate (Borax) Na2B₄O ₇ ◆10H2O [B = 11.3%]	100,000	В	BO3-3	11.3%	0.885	885	
Potassium Chloride KCI [K = 61%, CI = 46.5%]	150,000	CI	сг	46.5%	0.323	323	
Calcium Silicate Ca_2SiO_4 [Ca = 46.5 %, Si = 16.5%]	350,000	Si	сг	16.5%	2.121	2,121	
	ENTER MARKET PRICE ABOVE			ENTER CORRECT % ABOVE IF CHANGED		PR REVI	NCES 2010년 4월 21일 SED:

Setting Clear WRITTEN STANDARDS

- Protects the management, GREENKEEPER & MEMBERSHIP from arbitrary & capricious committees in private clubs
- Assures ACCOUNTABILITY
- Training tool and informative
- Quality Assurance assures consistency
- Takes time and effort to develop; annual review

SKY72 sets standards for every aspect of operation.

300 pages of Maintenance Standards!

Over the years I have written these for F&B; lodging, HR, maintenance, security, budgeting, accounting.

		입자 크기 권장 사항	-11-1	
US Standard Sieve Mesh	Diameter of Sieve (mm)	Beard Bunker Sand % Retained on Sieve or Fraction	USGA Greensmix Sand % Retained on Sieve or Fraction	California Greens Sand % Retained on Sieve or Fractior
10	2.0	0 %	≤ 3 %	< 10 %
18	1.0	0%	<u>≤</u> 7%	\$ 10 %
35	0.5	75 % minimum	60 % minimum	
60	0.25	75 % minimum	00 % minimum	82 - 100 %
100	0.15	Remainder	<u>≤</u> 20 %	02 - 100 /0
140	0.10	Kemainder	< 5 %	
270	0.05	Angular Sands		
Silt	0.002	Only. No material less	≤ 5 %	0 - 8 %
Clay	< 0.002	than 0.11 mm	≤ 3 %	

FERTILIZER & CHEMICAL INPUTS FOR HEALTHY TURF

JAMES GRAHAM PRUSA

DIRECTOR, GOLF COURSES AND LAB SKY72 Golf Resorts - Korea

WEB SITE: WWW.PRUSAASSOCIATES.COM EMAIL: jgp@alumni-GSB.Stanford.edu

You may download this PPT at this link:

<u>www.PrusaAssociates.com/PowerPoint Presentations/2017PGCMC Prusa.pptx</u>